Due the voluminous number of all research articles, please wait for a moment.

Evaluation of unmanned surface vehicle acoustics for gas seep detection in shallow coastal waters

date_range 2020
person
Author Scoulding B.
description
Abstract Understanding measurement, monitoring and verification (MM&V) needs in the environmental context of potential subsea carbon dioxide (CO2) storage projects (Carbon Capture and Storage [CCS]) is a challenging task globally. Unmanned surface vehicles (USV) equipped with acoustic sensors are an attractive option for detecting gas leaks due to their spatial and temporal coverage potential. Here, a SIMRAD Wide Band Transceiver Mini acoustic sensor is evaluated for detecting CO2 leaks in shallow coastal water (<20 m depth). Small flows of CO2 (0.34–3.90 tonnes CO2 gas yr−1) were released into the water column. The plumes were detected with the acoustic system with the results highlighting their dynamic nature. A survey simulation model showed that the probability of detecting a leak inside a 5 × 10 km survey area improved depending on the number of leaks within it, with 100 % detection probability for two leaks (>7.8 tonnes CO2 gas yr−1) achieved with a survey time of 600 h. As the number of leaks increased to 40 (> 156 tonnes CO2 gas yr−1) the survey duration reduced to ∼110 h for 100 % probability of detecting a plume. These detection flow rates are well below the upper limits proposed by IPCC (2005) for climate mitigation for a release of 1% in 1000 years for most proposed CO2 storage sites. Regulatory requirements for CCS sites are still evolving to address societal expectations and environmental monitoring needs. This work assists in determining detectable leak rate thresholds that can be detected in the marine environment using acoustic sensors. © 2020 Elsevier Ltd
article
DOI 10.1016/j.ijggc.2020.103158
language
Journal International Journal of Greenhouse Gas Control
description
Source Scopus

Submit your feedback

CARI! has performed crawling, tagging, and other data processing to produce this page. If you find an error or have feedback for this page, please fill out the form below. Thank You.
How to correct
  • Name and Email are required!
  • One of the location fields (prov, district, or sub-district) must be filled in
  • Fields other than those mentioned above are optional