Due the voluminous number of all research articles, please wait for a moment.

Positioning design of horizontal drain in sandwiched clay-drain systems for land reclamation

date_range 2020
person
Author Feng J.
description
Abstract In practice, horizontal drains are often arranged at certain depth in dredged clays to accelerate the consolidation process in layered clay-sand reclamation subjected to surcharge preloading, and the layout of horizontal drain is usually determined based on a trial-and-error procedure. Based on the transfer matrix approach, a semi-analytical solution is derived using Laplace transform and its numerical inverse methods for use to optimize the design of horizontal drain in layered clay-sand reclamation. The effectiveness of the proposed technique is demonstrated by comparing against other analytical solutions. The sensitivity of the optimal position of horizontal drain to the anisotropic coefficient of consolidation, the thickness ratio, and the anisotropic permeability is discussed. Results show that the optimal position of horizontal drain is related to the drainage capacity in adjacent soil layers, and it always moves towards the boundary with a lower drainage capacity. In the end, an example of a four-layered soil is calculated to demonstrate the advantage of conducting the optimal design of horizontal drain. Remarkably, the rate of consolidation with the optimal implementation of horizontal drain is faster than the conventional design with horizontal drain at the mid-height. © 2020 Elsevier Ltd
article
DOI 10.1016/j.compgeo.2020.103777
language
Journal Computers and Geotechnics
description
Source Scopus

Submit your feedback

CARI! has performed crawling, tagging, and other data processing to produce this page. If you find an error or have feedback for this page, please fill out the form below. Thank You.
How to correct
  • Name and Email are required!
  • One of the location fields (prov, district, or sub-district) must be filled in
  • Fields other than those mentioned above are optional

Meta Tags

Source from CARI Engine
Provincies :
Cities :
Districts :
Hazards :
Sub DM Phase : Improve Infrastructure
Sub Aspects :

References Articles

Source from Semantic Scholar